directSMS PHP API

[image: image1.jpg]
directSMS

PHP API

Version 1.2.1
www.directsms.com.au
Table of Contents

3CHANGE HISTORY

3OVERVIEW

3INTRODUCTION

3SUPPORTED PLATFORMS

5INSTALLATION

5APPLICATION DEVELOPMENT

5CONNECT & AUTHENTICATE

6SEND AN SMS MESSAGE

6SCHEDULE AN SMS MESSAGE

7GET BALANCE

7RETRIEVE REPLY MESSAGES

8RETRIEVE INBOUND MESSAGES

8DISCONNECT

8REFERENCES

8Class sms_connection

8sms_connection()

9connect()

9is_error()

9get_error()

9send_branded_sms()

9send_two_way_sms()

9schedule_branded_sms()

9schedule_two_way_sms()

9get_sms_replies()

10get_inbound_sms()

10disconnect()

10Class sms_reply

10to_string()

11Class inbound_sms

11to_string()

12Appendix A – Code Sample

CHANGE HISTORY

	Date
	Version
	Changes to Documentation
	Author

	22/8/2004
	V0.1
	Initial Document
	R.Zaki

	24/8/2004
	V1.0
	Document Release
	R.Zaki

	24/7/2005
	V1.1
	Add inbound SMS functionality
	R.Zaki

	6/11/2005
	V1.2
	Add scheduling functions
	R.Zaki

	17/02/2006
	V1.2.1
	Add the new licencing scheme
	R.Zaki

OVERVIEW

This document is intended for those users who wish to develop applications that make use of directSMS’ SMS Gateway. There are a number of different ways of gaining access to the Gateway’s functionality:

• SOAP
Enabling access to the directSMS server or to deliver SMS using XML messages.

• HTTP

Interact with the server by submitting POST or GET HTTP requests. This is the most basic of all gateway interfaces, allowing clients on just about any internet connected platform to access the various functions of the directSMS gateway.

• Java

Enables access to the directSMS gateway from any Java/J2EE platform.

• PHP
Allows PHP based systems to access the directSMS gateway by wrapping the directSMS HTTP API into an easy to use PHP library.

This document will concentrate on the SmsGateway PHP API and will detail the various operations available through this API.

INTRODUCTION

This API will allow the sending and receiving of messages, as well as basic account inquiries. The API is provided in the form of a PHP library to be included with the rest of your application PHP source code.

SUPPORTED PLATFORMS

The API was developed and tested on PHP 4.3.3, with OpenSSL support compiled and configured in order to communicate with the directSMS’ gateway over SSL for greater security. Without SSL support configured, you will not be able to use the more secure form of connection.

Note, however, that releases of PHP prior to 4.3 will not support encrypted communications with the directSMS gateway via SSL. It is recommended that you upgrade to the 4.3 release of PHP to take full advantage of this API.

The main class to be used in application development is sms_connection, which is used to connect to the gateway, query the customer’s balance, send branded and 2-way messages as well as retrieving any replies received for 2-way messages.

In the event of any errors encountered while interacting with the SMS gateway, the error message describing the error condition can be retrieved by calling the get_error() method.

INSTALLATION

The API is distributed as PHP source code (sms_connection.php), it can be installed anywhere that your PHP interpreter has read access. For convenience, we suggest that you install it in the same directory as the PHP application that will be using it.

APPLICATION DEVELOPMENT

The following section will explain how to best use the API in building SMS enabled applications through the use of examples. The sample script (included as Appendix A) details the various operations available through the API.

CONNECT & AUTHENTICATE

In order to connect and authenticate to the server, call the connect() method passing a directSMS username and password. If the credentials passed are genuine, the method will return true. If the gateway is down, the username and password are invalid in any way, or any one of a number of errors, the method will return false.

If the user account used is not set up for API access, an error will be returned. In order to use the API, you can either contact the directSMS Support team to enable this feature on your account. This will activate your 60 day API trial. Please note; this is a single seat licence, for use on one customer account only.

The second option is to purchase an enterprise licence which will require you to pass the licence key along with the login credentials for authentication when opening a new connection. This is the approach to take if you are developing an application that will be distributed to multiple customers.

<html>
 <title>directSMS PHP Code Sample</title>
 <body>
 <h2>directSMS PHP Code Sample</h2>
 <pre>
<?php
 // load the directsms sms_connection library
 require_once("sms_connection.php");
 // create a new connection, using the

 // secure connection
 $conn = new sms_connection(true);
 // check if there are any problems. at this stage
 // the only problem at this stage might be that
 // the sms gateway is unreachable
 if($conn->is_error())
 {
 print("ERROR: " . $conn->get_error() . "\n");
 }
 else
 {
 // login and start a session, passing the username,

 // password and the optional licence key
 if($conn->connect("s3UsEr", "pAs5wOrD",

 "71904d3a-d4c5ab00-46dbf93a-1f36312e"))
 {
 // go about your business
 }

SEND AN SMS MESSAGE

Once authenticated and connected, the client can send a branded message or a 2-way message using the send_branded_sms and send_two_way_sms methods.

 // create a new sms message
 $message = "this is a test message from the directsms sms gateway";
 // create an array of the mobile numbers to send this message to

 $mobiles = array("0401001001", "0402002002");
 // send a branded sms message with the sender id "test 123"
 $id = $conn->send_branded_sms($message, $mobiles, "test 123");

 print("branded message id = " . $id . "\n");
 // send a 2-way sms message with the message id "my-id". we can
 // use that to search for replies to this message later, or at
 // least to correlate reply messages to this 2-way message later
 // on
 $id = $conn->send_two_way_sms($message, $mobiles, "my-id");

 print("2-way message id = " . $id . "\n");
The send_branded_sms and send_two_way_sms methods return the unique directSMS message identifiers, which uniquely identify the submitted SMS messages. Should any error conditions arise while communicating with the gateway, null will be returned instead, and the methods is_error() and get_error() on the sms_connection used can be used to check the error.

SCHEDULE AN SMS MESSAGE

Once authenticated and connected, the client can schedule a branded message or a 2-way message for sending at a later date/time using the schedule_branded_sms and schedule_two_way_sms methods respectively. The date/time you wish the SMS to be sent at has to be passed as the number of seconds after the Unix Epoch (January 1 1970 00:00:00 GMT). The scheduled send time will be rounded to the nearest time the send SMS daemon is scheduled to run.
 // schedule a message to go out at 11 AM on Jan 1

 // of next year to say happy new year

 $time = mktime(11, 0, 0, 1, 1, date("Y") + 1);

 // the message

 $message = "Happy new year from the team @ directSMS team";

 // the mobiles

 $mobiles = array("0407263977", "0414574496");

 // save away

 $id = $conn->schedule_branded_sms($message, $mobiles,
 "directSMS", $time);

 if($conn->is_error())

 {

 print("error scheduling new branded message = " .
 $conn->get_error() . "\n");

 }

 else

 {

 print("scheduled message id = $id\n");

 }
The schedule_branded_sms and schedule_two_way_sms methods return the unique directSMS message identifiers, which uniquely identify the submitted SMS messages. Should any error conditions arise while communicating with the gateway, null will be returned instead, and the methods is_error() and get_error() on the sms_connection used can be used to check the error.

GET BALANCE

The get balance() method can be used to retrieve the number of SMS credits left on the your directSMS account.

 // get the current balance
 $credits = $conn->get_balance();
 // use the is_error() method to check for
 // any problems
 if($conn->is_error())
 {
 // show the error encountered
 print("ERROR: " . $conn->get_error() . "\n");
 }
 else
 {
 // show the balance
 print("current credit balance = " . $credits . " credit(s)\n");
 }
RETRIEVE REPLY MESSAGES

The get_sms_replies() method allows client applications to retrieve “unread” replies to ALL 2-way SMS messages or to a single 2-way message. The get_sms_replies() method takes an optional messageid parameter. If a message id is specified, only “unread” replies to the referenced 2-way message will be retrieved.

 // lets retrieve any replies to the 2-way sms submitted just
 // now
 $replies = $conn->get_sms_replies(null, "my-id");
 print(count($replies) . " replies retrieved\n");
 // display the replies
 for($i = 0; $i < count($replies); $i++)
 {
 // print each reply on a separate line.
 print($replies[$i]->to_string() . "\n");
 }
The above code sample will result in the retrieval of all “unread” replies to the 2-way SMS message with the id “my-id” submitted earlier.

The get_sms_replies() method also takes a boolean parameter to mark any retrieved replies as “read”. In essence this stops the server from retrieving these messages again in future calls to the get_sms_replies() function.

RETRIEVE INBOUND MESSAGES

The get_inbound_sms() method allows client applications to retrieve “unread” inbound SMS messages. The get_inbound_sms () method takes an optional inbound_number parameter. If a number is specified, only “unread” messages received on the specified number will be retrieved.

 // lets retrieve any inbound sms messages received
 $messages = $conn->get_inbound_sms();
 print(count($messages) . " inbound messages retrieved\n");
 // display the messages
 for($i = 0; $i < count($messages); $i++)
 {
 // print each message on a separate line.
 print($messages [$i]->to_string() . "\n");
 }
The above code sample will result in the retrieval of all “unread” SMS messages received on any of the inbound numbers leased by the current customer.

The get_inbound_sms () method also takes a boolean parameter to mark any retrieved messages as “read”. In essence this stops the server from retrieving these messages again in future calls to the get_inbound_sms () method.

DISCONNECT

Once the client is finished sending and/or receiving all messages, they disconnect from the gateway using the disconnect() method.

 // done, now disconnect
 $conn->disconnect();
REFERENCES

The following section outlines the various classes making up the PHP API library.

Class sms_connection

This is the main class providing connectivity with the directSMS gateway. The following public methods are detailed below:

sms_connection()

This constructor takes a boolean argument secure which indicates whether or not to use SSL to communicate with the SMS gateway. Please note; In order to use SSL encryption, PHP 4.3 or higher is required.

connect()

This method will return a boolean after connecting and authenticating the user’s login credentials against the directSMS gateway.

If the user account used is not set up for API access, a false is returned, along with an error message. In order to use the API, you either need to contact the directSMS Support team to enable this feature on your account. This will activate your 60 day API trial. Please note; this is a single seat licence, for use on one customer account.

The second option is to purchase an enterprise licence which will require you to pass the licence key along with the login credentials for authentication when opening a new connection. This is the approach to take if you are developing an application that will be distributed to multiple customers.

is_error()

This method will return a boolean reflecting whether or not the last operation carried out using this sms_connection encountered an error condition.

get_error()

This method will return the error message associated with the error encountered during the last operation. If in fact an error condition is encountered. If the operation completed successfully, null is returned instead.

send_branded_sms()

This method will send the message passed in with the senderid specified through the directSMS gateway. Upon success, this method returns the 32 byte Message ID used by the directSMS gateway to uniquely identify the submitted SMS message. In the case of failure, null is returned instead.

send_two_way_sms()

This method will send the message passed in through the directSMS gateway, associating it with the messageid specified (This messageid can be used in later calls to get_sms_replies() to retrieve replies to this message and this message only). Upon success, this method returns the 32 byte Message ID used by the directSMS gateway to uniquely identify the submitted SMS message. If the operation fails, null is returned instead.

schedule_branded_sms()

This method will save the message passed in with the senderid specified to be sent out at the date/time specified. Upon success, this method returns the 32 byte Message ID used by the directSMS gateway to uniquely identify the submitted SMS message. In the case of failure, null is returned instead.

schedule_two_way_sms()

This method will save the message passed in associating it with the messageid specified. The message is sent out at the date/time specified. The messageid can be used in later calls to get_sms_replies() to retrieve replies to this message and this message only. Upon success, this method returns the 32 byte Message ID used by the directSMS gateway to uniquely identify the submitted SMS message. If the operation fails, null is returned instead.

get_sms_replies()

The method will return an array of sms_reply objects that represent the unread replies to 2-way SMS messages.

This method accepts 2 optional parameters:

messageid:
This instructs the SMS gateway to retrieve all unread replies to the 2-Way SMS message identified by messageid (the parameter passed with the SMS when it was submitted using send_two_way_sms()). If this parameter is not present, unread replies to ALL 2-way messages are returned.

mark_as_read:
This parameter instructs the gateway to mark all reply messages returned as “read”. This stops the gateway from returning them again in the future. If this parameter is not present or is set to false the returned messages are left as is and are in fact returned again in future calls to this method.

get_inbound_sms()

The method will return an array of inboun_sms objects that represent the unread inbound SMS messages.

This method accepts 2 optional parameters:

inbound_number:
This instructs the SMS gateway to retrieve all unread inbound SMS messages received on the specified number. If the number is not specified, the unread messages sent to ALL inbound numbers leased by the customer are retrieved.
mark_as_read:
This parameter instructs the gateway to mark all messages returned as “read”. This stops the gateway from returning them again in the future. If this parameter is not present or is set to false the returned messages are left as is and are in fact returned again in future calls to this method.

disconnect()

This method will disconnect the client from the gateway and close the connection.

Class sms_reply

This is the class of object returned by the directSMS gateway server in response to a request for “unread” 2-way message replies.

The attributes of this class are listed below:

message:

This is the SMS message text sent as a reply to the original 2-way message.

messageid:
The identifier that uniquely identifies this 2-Way message (in your system) that this reply belongs to. This is sent back to allow clients group replies to the different messages together. This is the messageid specified in your call to the get_sms_replies() method to submit the 2-way message.

mobile:
The mobile phone number of the person responding to this message. The number is returned in international format with a + at the front e.g. “+61412345678”.

when:
The number of seconds since this reply message was received by the gateway.

The following public methods are detailed below:

to_string()

This method returns a string representation of this reply object suitable for debugging.

Class inbound_sms

This is the class of object returned by the directSMS gateway in response to a request for “unread” inbound messages.

The attributes of this class are listed below:

message:
This is the SMS message text. The number is returned in international format with a + at the front e.g. “+61412345678”.
inbound_number:
The number the SMS message was sent to.
mobile:
The mobile phone number of the message sender. The number is returned in international format with a + at the front e.g. “+61412345678”.

when:
The number of seconds since this message was received by the gateway.

The following public methods are detailed below:

to_string()

This method returns a string representation of this message object suitable for debugging.

Appendix A – Code Sample

The following is a code sample outlining the use of the various methods in the sms_connection class.

<html>
 <title>directSMS PHP Code Sample</title>
 <body>
 <h2>directSMS PHP Code Sample</h2>
 <pre>
<?php
 /**/
 /* */
 /* desc: sample to show the operations available through the */
 /* directsms http api */
 /* */
 /* version: 1.0 */
 /* author: ramez zaki */
 /* copyright: copyright (c) 2001-2004. all rights reserved */
 /* date: 17/08/2004 */
 /* */
 /**/
 // load the directsms sms_connection library
 require_once("sms_connection.php");
 // create a new connection
 $conn = new sms_connection();
 // check if there are any problems. at this stage
 // the only problem at this stage might be that
 // the sms gateway is unreachable
 if($conn->is_error())
 {
 print("ERROR: " . $conn->get_error() . "\n");
 }
 else
 {
 // login and start a session
 if($conn->connect("s3UsEr", "pAs5wOrD"))
 {
 // get the current balance
 $credits = $conn->get_balance();
 // use the is_error() method to check for
 // any problems
 if($conn->is_error())
 {
 // show the error encountered
 print("ERROR: " . $conn->get_error() . "\n");
 }
 else
 {
 // show the balance
 print("current credit balance = " . $credits . " credit(s)\n");
 }
 // create a new sms message
 $message = "this is a test message from the directsms sms gateway";
 // create an array of the mobile numbers to send this message to
 $mobiles = array("0401001001", "0402002002");
 // send a branded sms message with the sender id "test 123"
 $id = $conn->send_branded_sms($message, $mobiles, "test 123");
 print("branded message id = " . $id . "\n");
 // send a 2-way sms message with the message id "my-id". we can
 // use that to search for replies to this message later, or at
 // least to correlate reply messages to this 2-way message later
 // on
 $id = $conn->send_two_way_sms($message, $mobiles, "my-id");
 print("2-way message id = " . $id . "\n");
 // lets retrieve any replies to the 2-way sms submitted just
 // now
 $replies = $conn->get_sms_replies(null, "my-id");
 print(count($replies) . " replies retrieved\n");
 // display the replies
 for($i = 0; $i < count($replies); $i++)
 {
 // print each reply on a separate line.
 print($replies[$i]->to_string() . "\n");
 }
 // lets retrieve any new inbound sms received
 $messages = $conn->get_inbound_sms();
 print(count($messages) . " inbound messages retrieved\n");
 // display the messages
 for($i = 0; $i < count($messages); $i++)
 {
 // print each message on a separate line.
 print($messages[$i]->to_string() . "\n");
 }
 // lets look at our credits again, they should have gone down
 print("current credit balance = " . $conn->get_balance() .

 " credit(s)\n");
 // schedule a message to go out at 11 AM on Jan 1

 // of next year to say happy new year

 $time = mktime(11, 0, 0, 1, 1, date("Y") + 1);

 // the message

 $message = "Happy new year from the team @ directSMS team";

 // the mobiles

 $mobiles = array("0407263977", "0414574496");

 // save away

 $id = $conn->schedule_branded_sms($message, $mobiles,
 "directSMS", $time);

 if($conn->is_error())

 {

 print("error scheduling new branded message = " .
 $conn->get_error() . "\n");

 }

 else

 {

 print("scheduled message id = $id\n");

 }
 // done, now disconnect
 $conn->disconnect();
 }
 else
 {
 // show the error and stop
 print("ERROR: " . $conn->get_error() . "\n");
 }
 }
?>
 </pre>
 </body>
</html>
directSMS PHP API v1.2.doc

Page 2 of 14

